203 research outputs found

    Compositional Verification and Optimization of Interactive Markov Chains

    Full text link
    Interactive Markov chains (IMC) are compositional behavioural models extending labelled transition systems and continuous-time Markov chains. We provide a framework and algorithms for compositional verification and optimization of IMC with respect to time-bounded properties. Firstly, we give a specification formalism for IMC. Secondly, given a time-bounded property, an IMC component and the assumption that its unknown environment satisfies a given specification, we synthesize a scheduler for the component optimizing the probability that the property is satisfied in any such environment

    Aiming Low Is Harder -- Induction for Lower Bounds in Probabilistic Program Verification

    Get PDF
    We present a new inductive rule for verifying lower bounds on expected values of random variables after execution of probabilistic loops as well as on their expected runtimes. Our rule is simple in the sense that loop body semantics need to be applied only finitely often in order to verify that the candidates are indeed lower bounds. In particular, it is not necessary to find the limit of a sequence as in many previous rules

    Relatively Complete Verification of Probabilistic Programs: An Expressive Language for Expectation-Based Reasoning

    Get PDF
    We study a syntax for specifying quantitative ā€œassertionsā€ - functions mapping program states to numbers - for probabilistic program verification. We prove that our syntax is expressive in the following sense: Given any probabilistic program C, if a function f is expressible in our syntax, then the function mapping each initial state Ļƒ to the expected value of f evaluated in the final states reached after termination C on Ļƒ (also called the weakest preexpectation wp[C](f)) is also expressible in our syntax. As a consequence, we obtain a relatively complete verification system for verifying expected values and probabilities in the sense of Cook: Apart from a single reasoning step about the inequality of two functions given as syntactic expressions in our language, given f, g, and C, we can check whether g ā‰¤ wp[C](f)

    Understanding Probabilistic Programs

    Get PDF
    We present two views of probabilistic programs and their relationship. An operational interpretation as well as a weakest pre-condition semantics are provided for an elementary probabilistic guarded command language. Our study treats important features such as sampling, conditioning, loop divergence, and non-determinism

    A Pre-expectation Calculus for Probabilistic Sensitivity

    Get PDF
    Sensitivity properties describe how changes to the input of a program affect the output, typically by upper bounding the distance between the outputs of two runs by a monotone function of the distance between the corresponding inputs. When programs are probabilistic, the distance between outputs is a distance between distributions. The Kantorovich lifting provides a general way of defining a distance between distributions by lifting the distance of the underlying sample space; by choosing an appropriate distance on the base space, one can recover other usual probabilistic distances, such as the Total Variation distance. We develop a relational pre-expectation calculus to upper bound the Kantorovich distance between two executions of a probabilistic program. We illustrate our methods by proving algorithmic stability of a machine learning algorithm, convergence of a reinforcement learning algorithm, and fast mixing for card shuffling algorithms. We also consider some extensions: using our calculus to show convergence of Markov chains to the uniform distribution over states and an asynchronous extension to reason about pairs of program executions with different control flow

    Causal ambiguity and partial orders in event structures

    Get PDF
    Event structure models often have some constraint which ensures that for each\ud system run it is clear what are the causal predecessors of an event (i.e. there is no causal ambiguity). In this contribution we study what happens if we remove\ud such constraints. We define five different partial order semantics that are intentional in the sense that they refer to syntactic aspects of the model. We also define an observational partial order semantics, that derives a partial order from just the event traces. It appears that this corresponds to the so-called early intentional semantics; the other intentional semantics cannot be observationally characterized. We study the equivalences induced by the different partial order definitions, and their interrelations

    A New Simulation Metric to Determine Safe Environments and Controllers for Systems with Unknown Dynamics

    Full text link
    We consider the problem of extracting safe environments and controllers for reach-avoid objectives for systems with known state and control spaces, but unknown dynamics. In a given environment, a common approach is to synthesize a controller from an abstraction or a model of the system (potentially learned from data). However, in many situations, the relationship between the dynamics of the model and the \textit{actual system} is not known; and hence it is difficult to provide safety guarantees for the system. In such cases, the Standard Simulation Metric (SSM), defined as the worst-case norm distance between the model and the system output trajectories, can be used to modify a reach-avoid specification for the system into a more stringent specification for the abstraction. Nevertheless, the obtained distance, and hence the modified specification, can be quite conservative. This limits the set of environments for which a safe controller can be obtained. We propose SPEC, a specification-centric simulation metric, which overcomes these limitations by computing the distance using only the trajectories that violate the specification for the system. We show that modifying a reach-avoid specification with SPEC allows us to synthesize a safe controller for a larger set of environments compared to SSM. We also propose a probabilistic method to compute SPEC for a general class of systems. Case studies using simulators for quadrotors and autonomous cars illustrate the advantages of the proposed metric for determining safe environment sets and controllers.Comment: 22nd ACM International Conference on Hybrid Systems: Computation and Control (2019

    Distributed Synthesis in Continuous Time

    Get PDF
    We introduce a formalism modelling communication of distributed agents strictly in continuous-time. Within this framework, we study the problem of synthesising local strategies for individual agents such that a specified set of goal states is reached, or reached with at least a given probability. The flow of time is modelled explicitly based on continuous-time randomness, with two natural implications: First, the non-determinism stemming from interleaving disappears. Second, when we restrict to a subclass of non-urgent models, the quantitative value problem for two players can be solved in EXPTIME. Indeed, the explicit continuous time enables players to communicate their states by delaying synchronisation (which is unrestricted for non-urgent models). In general, the problems are undecidable already for two players in the quantitative case and three players in the qualitative case. The qualitative undecidability is shown by a reduction to decentralized POMDPs for which we provide the strongest (and rather surprising) undecidability result so far
    • ā€¦
    corecore